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Abstract

Simplicity is a typed, combinator-based, functional language without
loops and recursion, designed to be used for crypto-currencies and block-
chain applications. It aims to improve upon existing crypto-currency lan-
guages, such as Bitcoin Script and Ethereum’s EVM, while avoiding some
of the problems they face. Simplicity comes with formal denotational
semantics defined in Coq, a popular, general purpose software proof as-
sistant. Simplicity also includes operational semantics that are defined
with an abstract machine that we call the Bit Machine. The Bit Ma-
chine is used as a tool for measuring the computational space and time
resources needed to evaluate Simplicity programs. Owing to its Turing
incompleteness, Simplicity is amenable to static analysis that can be used
to derive upper bounds on the computational resources needed, prior to
execution. While Turing incomplete, Simplicity can express any finitary
function, which we believe is enough to build useful “smart contracts” for
blockchain applications.

0 License
This work is licensed under a Creative Com-
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1 Introduction

Blockchain and distributed ledger technologies define protocols that allow large,
ad-hoc, groups of users to transfer value between themselves without needing
to trust each other or any central authority. Using public-key cryptography,
users can sign transactions that transfer ownership of funds to other users. To
prevent transactions from conflicting with each other, for example when one
user attempts to transfer the same funds to multiple different users at the same
time, a consistent sequence of blocks of transactions is committed using a proof
of work scheme. This proof of work is created by participants called miners.
Each user verifies every block of transactions; among multiple sequences of valid
blocks, the sequence with the most proof of work is declared to be authoritative.
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Bitcoin [20] was the first protocol to use this blockchain technology to create
a secure and permissionless crypto-currency. It comes with a built-in program-
ming language, called Bitcoin Script [6, 22], which determines if a transaction
is authorized to transfer funds. Rather than sending funds to a specific party,
users send funds to a specific Bitcoin Script program. This program guards the
funds and only allows them to be redeemed by a transaction input that causes
the program to return successfully. Every peer in the Bitcoin network must exe-
cute each of these programs with the input provided by the transaction data and
all these programs must return successfully in order for the given transaction to
be considered valid.

A typical program specifies a public key and simply requires that a valid
digital signature of the transaction for that key be provided. Only someone
with knowledge of the corresponding private key can create such a signature.

Funds can be guarded by more complex programs. Examples range from
simpler programs that require signatures from multiple parties, permitting es-
crow services [14], to more complex programs that allow for zero-knowledge
contingent payments [19], allowing for trustless and atomic purchases of digital
data. This last example illustrates how Bitcoin Script can be used to build
smart contracts, which allow parties to create conditional transactions that are
enforced by the protocol itself.

Because of its Script language, Bitcoin is sometimes described as pro-
grammable money.

1.1 Bitcoin Script

Bitcoin Script is a stack-based language similar to Forth. A program in Bitcoin
Script is a sequence of operations for its stack machine. Bitcoin Script has
conditionals but no loops, thus all programs halt and the language is not Turing
complete.

Originally, these programs were committed as part of the output field of a
Bitcoin transaction. The program from the output being redeemed is executed
starting with the initial stack provided by the input redeeming it. The program
is successful if it completes without crashing and leaves a non-zero value on the
top of stack.

Later, a new option called pay to script hash (P2SH) [1] was added to Bitcoin.
Using this option, programs are committed by specifying a hash of the source
code as part of the output field of a Bitcoin transaction. The input field of a
redeeming Bitcoin transaction then provides both the program and the initial
stack for the program. The transaction is valid if the hash of the provided
program matches the hash specified in the output being redeemed, and if that
program executes successfully with the provided input, as before. The main
effect here is moving the cost of large programs from the person sending funds
to the person redeeming funds.

Bitcoin Script has some drawbacks. Many operations were disabled by Bit-
coin’s creator, Satoshi Nakamoto [21]. This has left Bitcoin Script with a few
arithmetic (multiplication was disabled), conditional, stack manipulation, hash-
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ing, and digital-signature verification operations. In practice, almost all pro-
grams found in Bitcoin follow a small set of simple templates to perform digital
signature verification.

However, Bitcoin Script also has some desirable properties. All Bitcoin
Script operations are pure functions of the machine state except for the
signature-verification operations. These signature-verification operations re-
quire a hash of some of the transaction data. Together, this means the pro-
gram’s success or failure is purely a function of the transaction data. Therefore,
the person creating a transaction can know whether the transaction they have
created is valid or not.

Bitcoin Script is also amenable to static analysis, which is another desirable
property. The digital-signature verification operations are the most expensive
operations. Prior to execution, Bitcoin counts the number of occurrences of
these operations to compute an upper bound on the number of expensive calls
that may occur. Programs whose count exceeds a certain threshold are invalid.
This is a form of static analysis that ensures the amount of computation that
will be done isn’t excessive. Moreover, before committing a program to an
output, the creator of the program can ensure that the amount of computation
that will be done will not be excessive.

1.2 Ethereum and the EVM

Ethereum [31] is another crypto-currency with programmable transactions. It
defines a language called EVM for its transactions. While more expressive and
flexible than Bitcoin Script, the design of Ethereum and the EVM has several
issues.

The EVM is a Turing-complete programming language with a stack, random
access memory, and persistent storage. To prevent infinite loops, execution is
limited by a counter called gas, which is paid for in Ethereum’s unit of account,
Ether, to the miner of the block containing the transaction. Static analysis isn’t
practical with a Turing-complete language. Therefore, when a program runs
out of gas, the transaction is nullified but the gas is still paid to the miner to
ensure they are compensated for their computation efforts.

Because of direct access to persistent storage, EVM programs are a function
of both the transaction and the state of the blockchain at the point the transac-
tion is inserted into the blockchain. This means users cannot necessarily know
what the result of their transaction will be when they create it, nor can they
necessarily know how much gas will be consumed. Users must provide enough
gas to cover the worst-case use scenario and there is no general purpose algo-
rithm that can compute that bound. In particular, there is no practical general
purpose way to tell if any given program will run out of gas in some context
either at redemption time or creation time. There have been some efforts to
perform static analysis on a subset of the EVM language [5], but these tools are
limited (e.g. they do not support programs with loops).

Unlike Bitcoin, there are many instances of ad-hoc, one-off, special purpose
programs in Ethereum. These programs are usually written in a language called

3



Solidity [12] and compiled to the EVM. These ad-hoc programs are regularly
broken owing to the complex semantics of both Solidity and the EVM; the
most famous of these failures were the DAO [8] and Parity’s multiple signature
validation program [26].

1.3 A New Language

In this paper, we propose a new language that maintains or enhances the desir-
able properties that Bitcoin Script has while adding expressiveness. Our design
goals are:

• Create an expressive language that provides users with the tools needed
to build novel programs and smart contracts.

• Enable static analysis that provides useful upper bounds on the amount
of computation required.

• Minimize bandwidth and storage requirements and enhance privacy by
removing unused code at redemption time.

• Maintain Bitcoin’s design of self-contained transactions whereby programs
do not have access to any information outside the transaction.

• Provide formal semantics that facilitate easy reasoning about programs
using existing off-the-shelf proof-assistant software.

A few of these goals deserve additional explanation:
Static analysis allows the protocol to place limits on the amount of compu-

tation a transaction can have, so that nodes running the protocol are not overly
burdened. Furthermore, the static analysis can provide program creators with
a general purpose tool for verifying that the programs they build will always
fit within these limits. Additionally, it is easy for the other participants in a
contract to check the bounds on the smart contract’s programs themselves.

Self-contained transactions ensure that execution does not depend on the
global state of the blockchain. Once a transaction’s programs have been vali-
dated, that fact can be cached. This is particularly useful when transactions
are being passed around the network before inclusion in the blockchain; once
included in the blockchain, the programs do not need to be executed again.

Finally, formal semantics that work with proof-assistant software provide
the opportunity for contract developers to reason about their programs to rule
out logical errors and to help avoid scenarios like the DAO and Parity’s multi-
signature program failure.

Like Bitcoin Script and the EVM, our language is designed as low-level
language for executing smart contracts, not as a language for coding in directly.
As such, we expect it to be a target for other, higher-level, languages to be
compiled to.

We call our new language Simplicity.
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iden : A ` A
s : A ` B t : B ` C

comp s t : A ` C

unit : A ` 1

t : A ` B
injl t : A ` B + C

t : A ` C
injr t : A ` B + C

s : A× C ` D t : B × C ` D
case s t : (A+B)× C ` D

s : A ` B t : A ` C
pair s t : A ` B × C

t : A ` C
take t : A×B ` C

t : B ` C
drop t : A×B ` C

Figure 1: Typing rules for the terms of core Simplicity.

2 Core Simplicity

Simplicity is a typed combinator language. Each well-typed Simplicity expres-
sion is associated with two types, an input type and an output type. Every
expression denotes a function from its input type to its output type.

2.1 Types in Simplicity

Types in Simplicity come in three flavors.

• The unit type, written as 1, is the type with one element.

• A sum type, written as A + B, contains the tagged union of values from
either the left type A or the right type B.

• A product type, written as A×B, contains pairs of elements with the first
one from the type A and the second one from the type B.

There are no recursive types in Simplicity. Every type in Simplicity only
contains a finite number of values; the number of possible values a type contains
can be computed by interpreting the type as an arithmetic expression.

2.2 Terms in Simplicity

The term language for Simplicity is based on Gentzen’s sequent calculus [13]. We
write a type-annotated Simplicity expression as t : A ` B where t a Simplicity
expression, A is the expression’s input type, and B is the expression’s output
type.
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The core of Simplicity consists of nine combinators for building expressions.
They capture the fundamental operations for the three flavors of types in Sim-
plicity. The typing rules for these nine combinators is given in Figure 1.

We can classify the combinators based on the flavor of types they support.

• The unit term returns the singular value of the unit type and ignores its
argument.

• The injl and injr combinators create tagged values, while the case com-
binator, Simplicity’s branching operation, evaluates one of its two sub-
expressions based on the tag of the first component of its input.

• The pair combinator creates pairs, while the take and drop combinators
access first and second components of a pair respectively.

• The iden and comp combinators are not specific to any flavor of type.
The iden term represents the identity function for any type and the comp
combinator provides function composition.

Simplicity expressions form an abstract syntax tree. The leaves of this tree are
either iden or unit terms. The nodes are one of the other seven combinators.
Each node has one or two children depending on which combinator the node
represents.

Precise semantics are given in the next section. Extensions to this core set
of combinators is given in Section 4.

2.3 Denotational Semantics of Simplicity

Before giving the semantics of Simplicity terms, we need notations for the values
of Simplicity types.

• We write 〈〉 : 1 for the singular value of the unit type.

• We write σL(a) : A+B when a : A for left-tagged values of the sum type.

• We write σR(b) : A + B when b : B for right-tagged values of the sum
type.

• We write 〈a, b〉 : A×B when a : A and b : B for values of the pair type.

We emphasize that these values are not directly representable in Simplicity
because Simplicity expressions can only denote functions; we use these values
only to define the functional semantics of Simplicity.

Simplicity’s denotational semantics are recursively defined. For an expres-
sion t : A ` B, we define its semantics JtK : A→ B as follows.
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JidenK(a) := a

Jcomp s tK(a) := JtK(JsK(a))

JunitK(a) := 〈〉
Jinjl tK(a) := σL(JtK(a))

Jinjr tK(a) := σR(JtK(a))

Jcase s tK〈σL(a), c〉 := JsK〈a, c〉
Jcase s tK〈σR(b), c〉 := JtK〈b, c〉

Jpair s tK(a) := 〈JsK(a), JtK(a)〉
Jtake tK〈a, b〉 := JtK(a)

Jdrop tK〈a, b〉 := JtK(b)

We have formalized the language and semantics of core Simplicity in the Coq
proof assistant [29]. The formal semantics in Coq are the official semantics of
Simplicity, and for core Simplicity, it is short enough that it fits in Appendix A
of this paper. Having semantics in a general purpose proof assistant allows
us to formally reason both about programs written in Simplicity and about
algorithms that analyze Simplicity programs.

2.4 Completeness

Simplicity cannot express general computation. It can only express finitary func-
tions, because each Simplicity type contains only finitely many values. However,
within this domain, Simplicity’s set of combinators is complete: any function
between Simplicity’s types can be expressed.

Theorem 2.1 (Finitary Completeness) Let A and B be Simplicity types.
Let f : A→ B be any function between these types. Then there exists some core
Simplicity expression t : A ` B such that JtK = f .

We have verified this theorem with Coq.
This theorem holds because functions between finite types can be described,

in principle, by a lookup table that maps inputs to outputs. In principle, such a
lookup table can be encoded as a Simplicity expression that does repeated case
analysis on its input and returns a fixed-output value for each possible case.

However, using this theorem to construct Simplicity expressions is not prac-
tical. For example, a lookup table for the compression function for SHA-256 [24],
which maps 768 bits to 256 bits, would be astronomical in size, requiring 2776

bits. To create practical programs in Simplicity, we need to take advantage of
structured computation in order to succinctly express functions.
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2.5 Example Programs

The combinators of core Simplicity may seem paltry, so in this section we il-
lustrate how we can construct programs in Simplicity. We begin by defining a
type for a bit, 2, as the sum of two unit types.

2 := 1 + 1

We choose an interpretation of bits as numbers where we define the left-
tagged value as denoting zero and the right tagged value as denoting one.

dσL〈〉e2 := 0

dσR〈〉e2 := 1

We can write Simplicity programs to manipulate bits. For example, we can
define the not function to flip a bit.

not : 2 ` 2

not := comp (pair iden unit) (case (injr unit) (injl unit))

By recursively taking products, we can define types for multi-bit words.

21 := 2

22n := 2n × 2n

For example, the 232 type can represent 32-bit words.
We recursively define the interpretation of pairs of words as numbers, choos-

ing to use big-endian order.

d〈a, b〉e22n := dae2n · 2n + dbe2n

We can write a half-adder of two bits in Simplicity.

half-adder : 2× 2 ` 22

half-adder := case (drop (pair (injl unit) iden))

(drop (pair iden not))

We can prove the half-adder expression correct.

Theorem 2.2 (Half Adder Correct) Let a, b : 2 be two bits. Then

dJhalf-adderK〈a, b〉e22 = dae2 + dbe2

We have proven this theorem in Coq. This particular theorem can be proven
by exhaustive case analysis (there are only four cases) and equational reasoning
using Simplicity’s denotational semantics.

We continue and define a full adder by combining two half adders. From
there we can build ripple-carry adders for larger word sizes by combining full
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adders from smaller word sizes. The interested reader can find the Simplicity
expressions for these full adders in Appendix B.

Continuing, we can build multipliers and other bit-manipulation functions.
These can be combined to implement more sophisticated functions.

We have written the SHA-256 block compression function in Simplicity. Us-
ing 256-bit arithmetic, we have also constructed expressions for elliptic curve
operations over the Secp256k1 curve [9] that Bitcoin uses, and we have built a
form of ECDSA signature validation [23] in Simplicity.

To gain an understanding of the size of Simplicity expressions, let us examine
our implementation of the SHA-256 block compression function, sha-256-block :
2256 × 2512 ` 2256. Our Simplicity expression consists of 3 274 442 combinators.
However, this counts the total number of nodes in the abstract syntax tree that
makes up the expression. Several sub-expressions of this expression are dupli-
cated and can be shared. Imagine taking the abstract syntax tree and sharing
identical sub-expressions to create a directed acyclic graph (DAG) representing
the same expression. Counting this way, the same expression contains only 1 130
unique typed sub-expressions, which is the number of nodes that would occur
in the DAG representing the expression.

Taking advantage of shared sub-expressions is critical because it makes the
representation of typical expressions exponentially smaller in size. We choose
to leave sub-expression sharing implicit in Simplicity’s term language. This
ensures that Simplicity’s semantics are not affected by how sub-expressions are
shared. However, we do transmit and store Simplicity expressions in a DAG
format. This DAG representation of expressions is also important when we
consider static analysis in Section 3.3.

Using our formal semantics of Simplicity in Coq, we have proven our imple-
mentation of SHA-256 is correct.

Theorem 2.3 (SHA-256 Correct) Let a : 2256 and b : 2512. Let
sha-256-block : 2256 × 2512 ` 2256 be our Simplicity implementation of the
SHA-256 block compression function. Let SHA256Block : 2256 × 2512 → 2256 be
the SHA-256 block compression function. Then

Jsha-256-blockK〈a, b〉 = SHA256Block〈a, b〉

Our reference implementation of the SHA-256 compression function in Coq1

is taken from the Verified Software Toolchain (VST) project [3] where they use
it as their reference implementation for proving OpenSSL’s C implementation
of SHA-256 correct [2]. If we combine our Coq proof with the VST project’s
Coq proof, we would get a formal proof that our Simplicity implementation of
SHA-256 matches OpenSSL’s C implementation of SHA-256.

1The type of the reference implementation for the SHA-256 compression function in Coq
actually uses lists of 32-bit words. To simplify the presentation here, we have omitted the
translation between representations of the compression function’s inputs and outputs.
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3 The Bit Machine

One of the design goals for Simplicity is to be able to compute a bound on the
computation costs of evaluating a Simplicity program. While the denotational
semantics of Simplicity are adequate for determining the functional behavior
of Simplicity programs, we need operational semantics to provide a measure of
computational resources used. To do this, we create an abstract machine, called
the Bit Machine, tailored for evaluating Simplicity programs.

The Bit Machine is an abstract imperative machine whose state consists of
two non-empty stacks of data frames. One stack holds read-only frames, and
the other stack holds write-only frames. A data frame consists of an array of
cells and a cursor pointing either at one of the cells or pointing just beyond the
end of the array. Each cell contains one of three values: a zero bit, a one bit, or
an undefined value. The Bit Machine has a set of instructions that manipulate
the two stacks and their data frames.

Notionally, we will write a frame like in the following example.

[010?1?1]

This frame contains 7 cells. The ? character denotes a cell with an undefined
value. The 0 and 1 characters denotes cells with the corresponding bit value.
The frame’s cursor is pointing to the underscored cell.

When a frame’s cursor is pointing past the end of the array, we will write
an underscore after the array’s cells like the following.

[010?1?1]

Table 1 illustrates an example of a possible state of the Bit Machine. This
example contains a read-frame stack that has four data frames and a write-frame
stack that has two data frames. The top frame of the read-frame stack is called
the active read frame, and the top frame of the write-frame stack is called the
active write frame.

read frame stack write frame stack

[10011??110101000] [11??1101]

[0000] [111??]
[]

[10]

Table 1: Example state for the Bit Machine

The Bit Machine has ten instructions to manipulate its state, which we
describe below.

• nop: This instruction doesn’t change the state of the machine.
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• write(b): This instruction writes bit value b to the cell under the active
write frame’s cursor and advances the cursor by one cell.

– The value b must be either 0 or 1 or else the machine crashes.

– The active write frame’s cursor must not be beyond the end of the
array or else the machine crashes.

– The cell written to must have an undefined value before writing to it
or else the machine crashes.

• copy(n): This instruction copies n cells from the active read frame, start-
ing at its cursor, to the active write frame, starting at its cursor, and
advances the active write frame’s cursor by n cells.

– There must be at least n cells between the active read frame’s cursor
and the end of its array or else the machine crashes.

– There must be at least n cells between the active write frame’s cursor
and the end of its array and they all must have an undefined value
before writing to them or else the machine crashes.

– Note that undefined values can be copied.

• skip(n): This instruction advances the active write frame’s cursor by n
cells.

– This instruction is allowed to advance the cursor to the point just
past the end of the array; however if n is large enough that it would
advance it past this point, the machine crashes instead.

• fwd(n): This instruction moves the active read frame’s cursor forward by
n cells.

– This instruction is allowed to advance the cursor to the point just
past the end of the array; however if n is large enough that it would
advance it past this point, the machine crashes instead.

• bwd(n): This instruction moves the active read frame’s cursor backwards
by n cells.

– If this instruction would move the cursor before the beginning of the
array, the machine crashes instead.

• newFrame(n): This instruction allocates a new frame with n cells and
pushes it onto the write-frame stack, making it the new active write frame.

– The cursor for this new frame starts at the beginning of the array.

– The cells of the new frame are initialized with undefined values.

• moveFrame: This instruction pops a frame off the write-frame stack and
pushes it onto the read-frame stack.
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– The moved frame has its cursor reinitialized to the beginning of the
array.

– If this would leave the machine with an empty write frame stack, the
machine crashes instead.

• dropFrame: This instruction pops a frame off the read-frame stack and
deallocates it.

– If this would leave the machine with an empty read-frame stack, the
machine crashes instead.

• read: This instruction doesn’t modify the state of the machine. Instead
it returns the value of the bit under the active read frame’s cursor to the
machine’s operator.

– if the value under the active read frame’s cursor is undefined, or if it
is past the end of its array, the machine crashes instead.

The Bit Machine is deliberately designed to crash at anything resembling
undefined behavior.

3.1 Bit Machine Values

We can use the Bit Machine to evaluate Simplicity programs on their inputs.
First, we define how many cells are needed to hold the values of a given type.

bitSize(1) := 0

bitSize(A+B) := 1 + max(bitSize(A), bitSize(B))

bitSize(A×B) := bitSize(A) + bitSize(B)

The unit type doesn’t need any bits to represent its one value. A value of
sum type needs one bit for its tag and then enough bits to represent either of
its left or right values. A value of product type needs space to hold both its
values.

We precisely define a representation of values for Simplicity types as array
of cells below:

p〈〉q1 := []

pσL(a)qA+B := [0] · [?]
padl(A,B) · paqA

pσR(b)qA+B := [1] · [?]
padr(A,B) · pbqB

p〈a, b〉qA×B := paqA · pbqB

For the notation above, · denotes the concatenation of arrays of cells and
[b]

n
denotes an array of n cells all containing b.
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The padding for left and right values fills the array with sufficient undefined
values so that the array ends up with the required length.

padl(A,B) := max(bitSize(A), bitSize(B))− bitSize(A)

padr(A,B) := max(bitSize(A), bitSize(B))− bitSize(B)

Below are some examples of values represented as arrays of cells for the Bit
Machine. We define the inverse of d·e2n to be b·c2n that maps numbers to the
values that represent them.

pσL(b3c22)q22+2 = [011]

pσR(b0c2)q22+2 = [1?0]

The array of cells contains a list of the tags from the sum types and that is
about it. Notice that values of a multi-bit word type, 2n, have exactly n cells
and the representation is identical to its big-endian binary representation.

3.2 Operational Semantics

The operational semantics for Simplicity are given by recursively translating
a Simplicity expression into a sequence of instructions for the Bit Machine.
Figure 2 defines ⟪t : A ` B⟫∗, which results in a sequence of instructions for the
Bit Machine that evaluates the function JtK.

We have formalized the Bit Machine in Coq and Figure 2’s translation of
Simplicity expressions into Bit Machine instructions. We have verified, with
Coq, that our Bit Machine implementation of Simplicity respects Simplicity’s
denotational semantics.

Theorem 3.1 (Correctness of Operational Semantics) Let t : A ` B be
any Simplicity expression. Let v : A be any value of type A. Initialize a Bit
Machine with

• the value pvqA as the only frame on the read-frame stack with its cursor
at the beginning of the frame, and

• the value [?]
bitSize(B)

as the only frame on the write-frame stack with its
cursor at the beginning of the frame.

After executing the instructions ⟪t : A ` B⟫∗, the final state of the Bit Machine
has

• the value pvqA as the only frame on the read-frame stack, with its cursor
at the beginning of the frame, and

• the value pJtK(v)qB as the only frame on the write-frame stack, with its
cursor at the end of the frame.
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⟪iden : A ` A⟫∗ := copy(bitSize(A))

⟪comp s t : A ` C⟫∗ := newFrame(bitSize(B)); ⟪s : A ` B⟫∗;
moveFrame; ⟪t : B ` C⟫∗;
dropFrame

⟪unit : A ` 1⟫∗ := nop

⟪injl t : A ` B + C⟫∗ := write(0); skip(padl(B,C)); ⟪t : A ` B⟫∗
⟪injr t : A ` B + C⟫∗ := write(1); skip(padr(B,C)); ⟪t : A ` C⟫∗

⟪case s t : (A+B)× C ` D⟫∗ := match read with

0→ fwd(1 + padl(A,B));
⟪s : A× C ` D⟫∗;
bwd(1 + padl(A,B))

1→ fwd(1 + padr(A,B));
⟪t : B × C ` D⟫∗;
bwd(1 + padr(A,B))

⟪pair s t : A ` B × C⟫∗ := ⟪s : A ` B⟫∗; ⟪t : A ` C⟫∗
⟪take t : A×B ` C⟫∗ := ⟪t : A ` C⟫∗
⟪drop t : A×B ` C⟫∗ := fwd(bitSize(A)); ⟪t : B ` C⟫∗;

bwd(bitSize(A))

Figure 2: Operational Semantics for Simplicity using the Bit Machine.

In particular, the Bit Machine never crashes during this execution.

The fact that the Bit Machine never crashes means that during execution it
never reads from an undefined cell, nor does it ever write to a defined cell. This
means that, if one implements the Bit Machine on a real computer, one can
use an ordinary array of bits to represent the array of cells and cells that are
supposed to hold undefined values can be safely set to any bit value. As long as
this implementation only executes instructions translated from Simplicity and
started from a proper initial state, the resulting computation will be the same
as if one had used an explicit representation for undefined values.

3.3 Static Analysis

Using the Bit Machine, we can measure computational resources needed by a
Simplicity program. For instance we can:

• count the number of instructions executed by the Bit Machine.

• count the number of cells copied by the Bit Machine.
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extraCellBnd(iden : A ` A) := 0

extraCellBnd(comp s t : A ` C) := bitSize(B)+

max(extraCellBnd(s : A ` B),

extraCellBnd(t : B ` C))

extraCellBnd(unit : A ` 1) := 0

extraCellBnd(injl t : A ` B + C) := extraCellBnd(t : A ` B)

extraCellBnd(injr t : A ` B + C) := extraCellBnd(t : A ` C)

extraCellBnd(case s t : (A+B)× C ` D) :=max(extraCellBnd(s : A× C ` D),

extraCellBnd(t : B × C ` D))

extraCellBnd(pair s t : A ` B × C) :=max(extraCellBnd(s : A ` B),

extraCellBnd(t : A ` C))

extraCellBnd(take t : A×B ` C) := extraCellBnd(t : A ` C)

extraCellBnd(drop t : A×B ` C) := extraCellBnd(t : B ` C)

cellBnd(t : A ` B) := bitSize(A) + bitSize(B) + extraCellBnd(t : A ` B)

Figure 3: Definition of cellBnd.

• count the maximum number of cells in both stacks at any point during
execution.

• count the maximum number of frames in both stacks at any point during
execution.

The first two are measurements of time used by the Bit Machine, and the
last two are measurements of space used by the Bit Machine.

Using simple static analysis, we can quickly compute an upper bound on
these sorts of resource costs. In this paper, we will focus on the example of
counting the maximum number of cells in both stacks at any point during ex-
ecution. Figure 3 defines a function cellBnd that computes an upper bound on
the maximum number of cells that are needed during execution.

Theorem 3.2 (Static Analysis of Cell Usage) Let t : A ` B be any Sim-
plicity expression. Let v : A be any value of type A. Initialize a Bit Machine as
specified in Theorem 3.1. The maximum number of cells in both stacks of the
Bit Machine at any point during the execution of ⟪t : A ` B⟫∗ from this initial
state never exceeds cellBnd(t : A ` B).

We have formalized the above static analysis and proven the above theorem
in Coq.
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These kinds of static analyses are simple recursive functions of Simplicity
expressions, and the intermediate results for sub-expressions can be shared. By
using a DAG for the in-memory representation of Simplicity expressions, we
can transparently cache these intermediate results. This means the time needed
to compute static analysis is proportional to the size of the DAG representing
the Simplicity expression, as opposed to the time needed for dynamic analysis
such as evaluation, which may take time proportional to the size of the tree
representing the Simplicity expression.

The Bit Machine is an abstract machine, so we can think of these sorts of
static analyses as bounding abstract resource costs. As long as the abstract
resource costs are limited, then the resource costs of any implementation of
Simplicity will also be limited. These sorts of precise static analyses of resource
costs are more sophisticated than what is currently available for Bitcoin Script.

Notice that the definition of cellBnd does not directly reference the Bit Ma-
chine, so limits on the bounds computed by these static analyses can be imposed
on protocols that use Simplicity without necessarily requiring that applications
use the Bit Machine for evaluation. While we do use an implementation of the
Bit Machine in our prototype Simplicity evaluator written in C, others are free
to explore other models of evaluation. For example, the Bit Machine copies
data to implement the iden combinator, but another model of evaluation might
create shared references to data instead.

3.3.1 Tail Composition Optimization

Tail call optimization is an optimization used in many languages where a proce-
dure’s stack frame is freed prior to a call to another procedure when that call is
the last command of the procedure. The comp combinator in Simplicity behaves
much like a procedure call, and we can implement an analogous optimization for
the translation of Simplicity to the Bit Machine. Interested readers can find this
tail composition optimized translation, ⟪t : A ` B⟫tco

off , defined in Appendix C,
along with a static analysis of its memory use.

3.4 Jets

Evaluation of a Simplicity expression with the Bit Machine recursively traverses
the expression. Before evaluating some sub-expression t : A ` B, the Bit Ma-
chine is always in a state where the active read frame is of the form

r1 · pvqA · r2

for some value v : A and some arrays r1 and r2, and where the cursor is placed
at the beginning of the pvqA array slice.

Furthermore the active write frame is of the form

w1 · [?]
bitSize(B) · w2

for some arrays w1 and w2, and where the cursor is placed at the beginning of

the [?]
bitSize(B)

array slice.
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After the evaluation of the sub-expression t : A ` B, the active write frame
is of the form

w1 · pJtK(v)qB · w2

and where the cursor is placed at the beginning of the w2 array slice.
Taking an idea found in Urbit [32], we notice that if we recognize a familiar

sub-expression t : A ` B, the interpreter may bypass the BitMachine’s execution
of ⟪t : A ` B⟫∗ and instead directly compute and write pJtK(v)qB to the active
write frame. Following Urbit, we call such a familiar expression and the code
that replaces it a jet.

Jets are essential for making Simplicity a practical language. For our Block-
chain application we expect to have jets for at least the following expressions:

• arithmetic operations (addition, subtraction, and multiplication) from
8-bit to 256-bit word size,

• comparison operations (less than, less than or equal to, equality) from
8-bit to 256-bit word size,

• logical bitwise operation for 8-bit to 256-bit word sizes,

• constant functions for every possible 8-bit word,

• compression functions from hash functions such as SHA-256’s compression
function,

• elliptic curve point operations for the Secp256k1 curve [9], and

• digital signature validation for ECDSA [23] or Schnorr [28] signatures.

We take advantage of the fact that the representation of the values used for
arithmetic expressions in the Bit Machine match the binary memory format for
real hardware. This lets us write these jets by directly reading from and writing
to data frames.

Jets have several nice properties:

• Jets provide a formal specification of their behavior. The implementation
of a jet must produce output identical to the output that would be pro-
duced by the Simplicity expression being replaced. There is no possibility
for an ambiguous interpretation of what a jet computes.

• Jets cannot accidentally introduce new behavior or new side effects be-
cause they can only replicate the behavior of Simplicity expressions. To
add new behavior to Simplicity we must explicitly extend Simplicity (see
Section 4).

• Jets are transparent when it comes to reasoning about Simplicity expres-
sions. Jets are logically equal to the code they replace. Therefore, when
proving properties of one’s Simplicity code, jets can safely be ignored.

17



Naturally, we expect jetted expressions to have properties already proven and
available; this will aid reasoning about Simplicity programs that make use of
jets.

Because jets are transparent, the static analyses of resource costs are not
affected by their existence. To encourage the use of jets, we anticipate discounts
to be applied to the resource costs of programs that use jets based on the
estimated savings of using jets.

When a suitably rich set of jets is available, we expect the bulk of the
computation specified by a Simplicity program to be made up of these jets,
with only a few combinators used to combine the various jets. This should
bring the computational requirements needed for Simplicity programs in line
with existing blockchain languages. In light of this, one could consider Simplicity
to be a family of languages, where each language is defined by a set of jets that
provide computational elements tailored for its particular application.

4 Integration with Blockchains

Core Simplicity is language that does pure computation. In order to interact
with blockchains we extend Simplicity with new combinators.

4.1 Transaction Digests

The main operation used in Bitcoin Script is OP CHECKSIG which, given a
public key, a digital signature, and a SigHash type [15], generates a digest of the
transaction in accordance with the SigHash type and validates that the digital
signature for the digest is correct for the given public key. This operation allows
users to create programs that require their signatures for their transactions to
be authorized.

In core Simplicity we can implement, and jet, the digital signature validation
algorithm. However, it is not possible to generate the transaction digest because
core Simplicity doesn’t have access to the transaction data. To remedy this, we
add a new primitive combinator to Simplicity

sighash : SigHashType ` 2256

where SigHashType := (1 + 2)× 2 is a Simplicity type suitable for encoding all
possible SigHash types.

This combinator returns the digest of the transaction for the given SigHash
type. Together with the Simplicity implementation of digital signature verifica-
tion, we can implement the equivalent of Bitcoin’s OP CHECKSIG.

We can add other primitives to Simplicity to access specific fields of trans-
action data in order to implement features such as Bitcoin’s timelock oper-
ations [30, 7]. While Simplicity avoids providing direct access to persistent
storage, one could imagine an application where transactions contain data for
transactional updates to a persistent store. Simplicity could support primitives
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to read the details of these transactional updates and thereby enforce any set
of programmable rules on them.

4.2 Merklized Abstract Syntax Tree

Recall that when using P2SH, users commit to their program by hashing it and
placing that hash in the outputs of transactions. Only when redeeming their
funds does the user reveal their program, whose hash must match the committed
hash.

Pay to Merklized Abstract Syntax Tree, or P2MAST [17], enhances the P2SH
idea. Instead of hashing a linear encoding of a Simplicity expression, we use
the SHA-256’s block compression function, SHA256Block : 2256 × 2512 → 2256,
to recursively hash Simplicity sub-expressions. This computes a Merkle root of
Simplicity’s abstract syntax tree that we denote by #(·) and define as

#(iden) := SHA256Block〈tagiden, b0c2512〉
#(comp s t) := SHA256Block〈tagcomp, 〈#(s),#(t)〉〉

#(unit) := SHA256Block〈tagunit, b0c2512〉
#(injl t) := SHA256Block〈taginjl, 〈#(t), b0c2256〉〉
#(injr t) := SHA256Block〈taginjr, 〈#(t), b0c2256〉〉

#(case s t) := SHA256Block〈tagcase, 〈#(s),#(t)〉〉
#(pair s t) := SHA256Block〈tagpair, 〈#(s),#(t)〉〉
#(take t) := SHA256Block〈tagtake, 〈#(t), b0c2256〉〉
#(drop t) := SHA256Block〈tagdrop, 〈#(t), b0c2256〉〉

#(sighash) := SHA256Block〈tagsighash, b0c2512〉

where tagc : 2256 is an appropriate unique set of initial vectors per combinator.
We use the SHA-256 hash of the combinator name for its tag value.

When computing Merkle roots, like other kinds of static analysis, the inter-
mediate results of sub-expressions can be shared. Bitcoin Script cannot share
sub-expressions in this manner due to the linear encoding of Bitcoin Script
programs.

Another advantage of Merkle roots is that unused branches of case expres-
sions can be pruned at redemption time. Each unused branch can be replaced
with the value of its Merkle root. This saves on bandwidth, storage costs, and
enhances privacy by not revealing more of a Simplicity program than necessary.
Again, this is something not possible in Bitcoin Script.

To enable redemption of pruned Simplicity expressions, we add two new
combinators to replace the case combinator when pruning.

s : A× C ` D h : 2256

assertl s h : (A+B)× C ` D
h : 2256 t : B × C ` D

assertr h t : (A+B)× C ` D
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These assertion combinators follow the same form as the case combinator,
except one branch is replaced by a hash. The semantics of these combinators
require that the first component of their input be σL or σR as appropriate and
then they evaluate the available branch. The h : 2256 values do not affect the
semantics; they instead influence the Merkle root computation.

#(assertl s h) := SHA256Block〈tagcase, 〈#(s), h〉〉
#(assertr h t) := SHA256Block〈tagcase, 〈h,#(t)〉〉

Notice that we use tagcase for the tags of the assertions. During redemption,
one can replace case statements with appropriate assertions while still matching
the committed Merkle root of the whole expression.

#(case s t) = #(assertl s#(t)) = #(assertr#(s) t)

As long as the assertions hold, the computation remains unchanged. If an
assertion fails, because you pruned off a branch that was actually necessary,
then the computation fails and a transaction trying to redeem funds in that
manner is invalid.

Because failure is now a possible result during evaluation, we add a combi-
nator fail to allow one to develop programs that use assertions.

fail : A ` B

#(fail) := SHA256Block〈tagfail, b0c2512〉

When combined with the signature verification expression, one can build
the equivalent of Bitcoin’s OP CHECKSIGVERIFY operation to assert that a
signature is valid.

Degenerate assertions can also be used to enhance privacy by mixing entropy
into Merkle roots of sub-expressions. Given t : A ` B the expression

comp (pair (injl iden) unit) (assertl (take t)h) : A ` B

is semantically identical to t, but mixes h into its Merkle root computation.
When used inside branches that are likely to be pruned, this prevents adversaries
from effectively grinding out Simplicity expressions to see if they match the hash
of the missing branch.

The Merkle root of an expression does not commit to its types. We use
first-order unification [27] to perform type inference on Simplicity expressions,
replacing any remaining type variables with the unit type. Because the types of
pruned branches are discarded, the inferred types may end up smaller than in the
originally committed program. When this happens, the memory requirements
for evaluation with the Bit Machine may also decrease.
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4.3 Witness Values

During redemption, the user must provide inputs, such as digital signatures and
other witness data, in order to authorize a transaction. Rather than passing this
input as an argument to the Simplicity program, we embed such witness values
directly into the Simplicity expressions using the witness combinator.

b : B

witness b : A ` B

Semantically, the witness combinator just denotes a constant function, which
is something we can already write in core Simplicity. The difference lies in its
Merkle root computation.

#(witness b) := SHA256Block〈tagwitness, b0c2512〉

The value b is not committed by the Merkle root. This allows the user to
set witness value at redemption time, without affecting the expression’s Merkle
root. Users can use witness combinators at places where digital signatures are
needed and at places where choices are made at redemption time.

Using witness combinators enhances privacy because they are pruned away
when they occur in unused branches. This leaves little evidence that there was
an optional input at all.

The amount of witness data allowed at redemption time is limited at com-
mitment time because each witness data type is finite and there can only be
a finite number of witness combinators committed. This limits the computa-
tional power of Simplicity. For example, it is not possible to create a Simplicity
program that allows hashing of an unbounded amount of witness data in order
to validate a digital signature. However, it is possible to create a Simplicity
program that allows a large, but bounded, amount of witness data to be hashed
that is more than will ever be needed in practice. Thanks to pruning, only
the code used to hash the amount of witness data that actually occurs need be
provided at redemption time.

Type inference determines the minimal type for witness values. This pre-
vents them from being filled with unnecessary data.

The witness combinator is not allowed to be used in jets.

4.4 Extended Simplicity Semantics

In order to accommodate these extensions to core Simplicity, we need to broaden
Simplicity’s semantics. We use a monad, M, to capture the new effects of these
extensions.

M(A) := Trans→ A⊥

This monad is a combination of an environment monad (also called a reader
monad) with an exception monad.

21



This monad provides implicit access to a value of Trans type, which we
define to be the type of transaction data for the particular blockchain. During
evaluation, it is filled with the transaction containing the input redeeming the
Simplicity program being evaluated. This is used to give semantics to the sighash
and other similar primitives.

The monad also adds a failure value to the result type, denoted by ⊥ : A⊥
This allows us to give semantics to assertions and fail.

Given an expression t : A ` B, we denote this extended semantics by JtKM :
A→M(B). The core Simplicity semantics are lifted in the natural way so that

JtKM(a) = λe : Trans.JtK(a)

holds whenever t is composed of only core Simplicity combinators. The extended
set of combinators have the following semantics

JsighashKM(a) := λe.MakeSigHash(a, e)

Jassertl s hKM〈σL(a), c〉 := λe.JsKM〈a, c〉(e)
Jassertl s hKM〈σR(b), c〉 := λe.⊥
Jassertr h tKM〈σL(a), c〉 := λe.⊥
Jassertr h tKM〈σR(b), c〉 := λe.JtKM〈b, c〉(e)

JfailKM(a) := λe.⊥
Jwitness bKM(a) := λe.b

where MakeSigHash(a, e) is a function that returns a hash of a given transaction
e in accordance with the given SigHash type a.

The operational semantics are also extended to support our new combinators
by providing the Bit Machine with access to the transaction data and by adding
an explicit crash instruction to support assertions and fail.

We note that the effects captured by our monad are commutative and idem-
potent.2 While Simplicity’s operational semantics implicitly specify an order of
evaluation, the extended denotational semantics are independent of evaluation
order. This simplifies formal reasoning about Simplicity programs that use the
extended semantics. That said, we expect the majority of Simplicity program’s
sub-expressions to be written in core Simplicity whose denotational semantics
contain no effects at all, making reasoning about them simpler still.

4.5 Using Simplicity Programs in Blockchains

Simplicity programs are Simplicity expressions of type p : 1 ` 1, that may use
any of our extended combinators. Users transact by constructing their Simplic-

2We use the terms ‘commutative’ and ‘idempotent’ in the sense of King and Wadler [16]
as opposed to the traditional category theoretic definition of an idempotent monad.
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ity program and computing its Merkle root #(p). They have their counterparty
create a transaction that sends funds to that hash.

Later, when a user wants to redeem their received funds, they create a trans-
action whose input contains a Simplicity program whose Merkle root matches
the previous hash. At this point they have the ability to set the witness values
and prune any unneeded branches from case expressions. The witness combi-
nators handle the program’s effective inputs, so the program p is evaluated at
the value 〈〉 : 1. No output is needed because the program can use assertions to
fail in case of invalid witnesses. If the execution completes successfully, without
failing, the transaction is considered valid.

The basic signature program that mimics Bitcoin’s basic signature program
is composed of the following core Simplicity expressions

checkSig : Signature×(PubKey×2256) ` 2

pubKey : A ` PubKey

where checkSig checks whether a given signature validates for a given public key
and message hash, and pubKey returns a user’s specific public key.

These expressions can be combined into a basic signature verification pro-
gram.

basicSigVerify b c := comp (pair (witness b)

(pair pubKey (comp (witness c) sighash)))

(comp (pair checkSig unit) (case fail unit))

Other, more complex programs can be built to perform multi-signature
checks, to implement sophisticated smart contracts such as zero-knowledge con-
tingent payments, or to create novel smart contracts.

5 Results and Future Work

In many ways, Simplicity is best characterized by what features it leaves out
rather than what features it contains.

• Simplicity has no state. Purely functional, expression-based languages
facilitate equational reasoning about the semantics of expressions. For
example, there are no concerns about aliased references to a global heap,
so there is no need to work with separation logic or Hoare logic.

• Simplicity has no named variables. Using combinators lets us avoid deal-
ing with binders and environments for bound variables. This helps keep
our interpreter and static analyses simple and further eases equational
reasoning about Simplicity expressions.
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• Simplicity has no function types and therefore no higher-order functions.
While it is possible to compute upper bounds of computation resources of
expressions in the presence of function types, it likely that those bounds
would be so far above their actual needs that such analysis would not be
useful.

• Simplicity has no unbounded loops or recursion. It is possible to build
smart contracts with state carried through loops using covenants [25],
without requiring unbounded loops within Simplicity itself. Bounded
loops, such as the 64 rounds needed by our SHA-256 implementation,
can be achieved by unrolling the loop. Because of sub-expression sharing,
this doesn’t unreasonably impact program size. We do not directly write
Simplicity, rather we use functions written in Coq or Haskell to generate
Simplicity. These languages do support recursion and we use loops in
these meta-languages to generate unrolled loops in Simplicity.

Throughout this paper we have noted which theorems we have verified with
Coq. Other proofs are under development. In particular, we plan to formally
verify the denotational and operational semantics of the full Simplicity language,
including assertions and blockchain primitives.

To validate the suitability of Simplicity, we will be building example smart
contracts in a test blockchain or sidechain [4] application using Simplicity.

We also plan to use the VST project [3] to prove the correctness of our
C implementation of the Bit Machine. This would let us formally verify that
the assembly code generated by the CompCert compiler [18] from our C imple-
mentation respects Simplicity’s formal semantics. In particular, we would be
able to prove that substituting jets, such as SHA-256, with fast C or assembly
implementations preserves the semantics of Simplicity.

Simplicity is designed as a low-level language interpreted by blockchain soft-
ware. We anticipate higher-level languages will be used for development and
compiled to Simplicity. Ivy [10] and the Σ-State Authentication Language [11],
are existing efforts that may be suitable for being compiled to Simplicity. If
these higher-level languages come with formal semantics of their own, we will
have the opportunity to prove correct the compiler to Simplicity for these lan-
guages. For the time being, generating Simplicity with our Haskell and Coq
libraries is possible.

6 Conclusion

We have defined a new language designed to be used for crypto-currencies and
blockchains. It could be deployed in new blockchain applications, including
sidechains [4], or possibly in Bitcoin itself. Simplicity has the potential to be
used in any application where finitary programs need to be transported and
executed under potentially adversarial conditions.

Our language is bounded, without loops, but is expressive enough to repre-
sent any finitary function. These constraints allow for general purpose static

24



analysis that can effectively bound the amount of computational resources
needed by a Simplicity program prior to execution.

Simplicity has simple, functional semantics, which make formal reasoning
with software proof assistants relatively easy. This provides the means for people
who develop smart contract to formally verify the correctness of their programs.

We have written several low-level functions in Simplicity such as addition,
subtraction, and multiplication for various finite-bit words and formally verified
their correctness. With these we have built mid-level functions such as elliptic
curve addition and multiplication, ECDSA signature validation, and a SHA-
256 compression function. This is already sufficient to create simple single and
multi-signature verification programs in Simplicity. We have formally verified
our SHA-256 compression function is correct and have plans to formally verify
the remaining functions.
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A Simplicity Semantics in Coq

Below is the formal definition of core Simplicity as expressed in Coq [29]. The
Term type is the type of well-typed Simplicity expressions. The eval function
provides the denotational semantics of well-typed Simplicity expressions.

Inductive Ty : Set :=

| Unit : Ty

| Sum : Ty -> Ty -> Ty

| Prod : Ty -> Ty -> Ty.

Fixpoint tySem (x : Ty) : Set :=

match x with

| Unit => Datatypes.unit

| Sum a b => tySem a + tySem b

| Prod a b => tySem a * tySem b

end.

Inductive Term : Ty -> Ty -> Set :=

| iden : forall {A}, Term A A

| comp : forall {A B C},

Term A B -> Term B C -> Term A C

| unit : forall {A}, Term A Unit

| injl : forall {A B C},

Term A B -> Term A (Sum B C)

| injr : forall {A B C},

Term A C -> Term A (Sum B C)

| case : forall {A B C D},

Term (Prod A C) D -> Term (Prod B C) D ->

Term (Prod (Sum A B) C) D

| pair : forall {A B C},

Term A B -> Term A C -> Term A (Prod B C)

| take : forall {A B C},

Term A C -> Term (Prod A B) C

| drop : forall {A B C},

Term B C -> Term (Prod A B) C.

Fixpoint eval {A B} (x : Term A B) :

tySem A -> tySem B :=

match x in Term A B

return tySem A -> tySem B with

| iden => fun a => a

| comp s t => fun a => eval t (eval s a)

| unit => fun _ => tt

| injl t => fun a => inl (eval t a)

| injr t => fun a => inr (eval t a)
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| case s t => fun p => let (ab, c) := p in

match ab with

| inl a => eval s (a, c)

| inr b => eval t (b, c)

end

| pair s t => fun a => (eval s a, eval t a)

| take t => fun ab => eval t (fst ab)

| drop t => fun ab => eval t (snd ab)

end.

B Full Word Adders in Simplicity

Below we recursively define Simplicity programs for ripple-carry full-adders for
any 2n-bit word size. A full-adder takes two n-bit words and a carry-in bit as
inputs and returns a carry-out bit and an n-bit word.

full-addern : (2n × 2n)× 2 ` 2× 2n

full-adder1 := comp (pair (take half-adder) (drop iden))

(comp (pair (take (take iden))

(comp (pair (take (drop iden)) (drop iden))

half-adder))

(pair (case (drop (take iden)) (injr unit))

(drop (drop iden))))

full-adder2n := comp (pair (take (pair (take (take iden))

(drop (take iden))))

(comp (pair (take (pair (take (drop iden))

(drop (drop iden))))

(drop iden))

full-addern))

(comp (pair (drop (drop iden))

(comp (pair (take iden)

(drop (take iden)))

full-addern))

(pair (drop (take iden))

(pair (drop (drop iden)) (take iden))))

Theorem B.1 (Full Adder Correct) Let n be a power of two. Let a, b : 2n

be two n-bit words. Let c : 2 be a bit. Then

dxe2 · 2n + dye2n = dae2n + dbe2n + dce2
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where
Jfull-adderK〈〈a, b〉, c〉 = 〈x, y〉

We have verified the above theorem in Coq.
We have similarly defined multiplication for 2n-bit words and proven its

correctness theorem in Coq.

C Tail Composition Optimization

We define a variant of the translation of Simplicity to the Bit Machine, ⟪·⟫∗,
to add a tail composition optimization (TCO). This optimization moves the
dropFrame instruction earlier, potentially reducing the memory requirements
for execution by the Bit Machine. This is analogous to the tail call optimization
found in other languages. Our new definition will be a pair of mutually recursive
functions, ⟪·⟫tco

off and ⟪·⟫tco
on .

The definition of ⟪·⟫tco
off is identical to that of ⟪·⟫∗, replacing ⟪·⟫∗ by ⟪·⟫tco

off ,
except for the ⟪comp s t : A ` C⟫tco

off clause which is given below.

⟪comp s t : A ` C⟫tco
off := newFrame(bitSize(B));

⟪s : A ` B⟫tco
off ;moveFrame; ⟪t : B ` C⟫tco

on

In the tail position of the comp combinator, we removed the dropFrame
instruction and call ⟪·⟫tco

on instead. The definition of ⟪·⟫tco
on is given in Figure 4.

We have formally verified in Coq the following correctness theorem for ⟪·⟫tco
off .

Theorem C.1 (Correctness of TCO Operational Semantics) Let t :
A ` B be any Simplicity expression. Let v : A be any value of type A.
Initialize a Bit Machine with

• the value pvqA as the only frame on the read-frame stack with its cursor
at the beginning of the frame, and

• the value [?]
bitSize(B)

as the only frame on the write-frame stack with its
cursor at the beginning of the frame.

After executing the instructions ⟪t : A ` B⟫tco
off , the final state of the Bit Machine

has

• the value pvqA as the only frame on the read-frame stack with its cursor
at the beginning of the frame, and

• the value pJtK(v)qB as the only frame on the write-frame stack with its
cursor at the end of the frame.

In particular, the Bit Machine never crashes during this execution.
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⟪iden : A ` A⟫tco
on := copy(bitSize(A));dropFrame

⟪comp s t : A ` C⟫tco
on := newFrame(bitSize(B)); ⟪s : A ` B⟫tco

on ;

moveFrame; ⟪t : B ` C⟫tco
on

⟪unit : A ` 1⟫tco
on := dropFrame

⟪injl t : A ` B + C⟫tco
on := write(0); skip(padl(B,C)); ⟪t : A ` B⟫tco

on

⟪injr t : A ` B + C⟫tco
on := write(1); skip(padr(B,C)); ⟪t : A ` C⟫tco

on

⟪case s t : (A+B)× C ` D⟫tco
on := match read with

0→ fwd(1 + padl(A,B));
⟪s : A× C ` D⟫tco

on

1→ fwd(1 + padr(A,B));
⟪t : B × C ` D⟫tco

on

⟪pair s t : A ` B × C⟫tco
on := ⟪s : A ` B⟫tco

off ; ⟪t : A ` C⟫tco
on

⟪take t : A×B ` C⟫tco
on := ⟪t : A ` C⟫tco

on

⟪drop t : A×B ` C⟫tco
on := fwd(bitSize(A)); ⟪t : B ` C⟫tco

on

Figure 4: Operational semantics for Simplicity using the Bit Machine with TCO.

The proof proceeds by establishing that the machine state transformation
induced by executing the instructions

⟪t : A ` B⟫tco
off ;dropFrame

and the instructions
⟪t : A ` B⟫tco

on

are identical.
We would like an improved static analysis of the memory use of this TCO ex-

ecution. Figure 5 defines the static analysis cellBndtco(t : A ` B) which bounds
the memory use of the TCO execution. The static analysis becomes somewhat
more intricate with the more complex translation. But we may proceed with
confidence because we have a formal verification in Coq of the following theorem.

Theorem C.2 (Static Analysis of Cell Usage with TCO) Let t : A ` B
be any Simplicity expression. Let v : A be any value of type A. Initialize a Bit
Machine as specified in Theorem C.1. The maximum number of cells in both
stacks of the Bit Machine at any point during the execution of ⟪t : A ` B⟫tco

off

from this initial state never exceeds cellBndtco(t : A ` B).

The proof proceeds by establishing that the additional memory used
by ⟪t : A ` B⟫tco

off and ⟪t : A ` B⟫tco
on in any machine state is no more than

max(n1, n2) and max(n1−m,n2) respectively where 〈n1, n2〉 = extraCellBndtco(t :
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A ` B) and m is the number of cells in the active read frame before executing
⟪t : A ` B⟫tco

on .
There is a possibility for a head composition optimization where the

newFrame(n) instruction is delayed in order to potentially save memory.
It is unclear to us if this is worth the added complexity, so we have not pursued
this yet.
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extraCellBndtco(iden : A ` A) := 〈0, 0〉
extraCellBndtco(comp s t : A ` C) := let 〈n1, n2〉 =

extraCellBndtco(s : A ` B) in

let 〈m1,m2〉 =

extraCellBndtco(t : B ` C) in

let b = bitSize(B) in

〈max(b+ n1,m1, b+m2), b+ n2〉
extraCellBndtco(unit : A ` 1) := 〈0, 0〉

extraCellBndtco(injl t : A ` B + C) := extraCellBndtco(t : A ` B)

extraCellBndtco(injr t : A ` B + C) := extraCellBndtco(t : A ` C)

extraCellBndtco(case s t : (A+B)× C ` D) := let 〈n1, n2〉 =

extraCellBndtco(s : A× C ` D)

in

let 〈m1,m2〉 =

extraCellBndtco(t : B × C ` D)

in

〈max(n1,m1),max(n2,m2)〉
extraCellBndtco(pair s t : A ` B × C) := let 〈n1, n2〉 =

extraCellBndtco(s : A ` B) in

let 〈m1,m2〉 =

extraCellBndtco(t : A ` C) in

〈m1,max(n1, n2,m2)〉
extraCellBndtco(take t : A×B ` C) := extraCellBndtco(t : A ` C)

extraCellBndtco(drop t : A×B ` C) := extraCellBndtco(t : B ` C)

cellBndtco(t : A ` B) := let 〈n1, n2〉 = extraCellBndtco(t : A ` B) in

bitSize(A) + bitSize(B) + max(n1, n2)

Figure 5: Definition of cellBndtco.
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